And the challenges of an AI world where everyone is above average
I’ve been an Apple fanboy since the early 1980s. I owned one Windoze computer years ago that was mostly for games my kid wanted to play. Otherwise, I’ve been all Apple for around 40 years. But what the heck is the deal with these ads for Apple Intelligence?
In this ad (the most annoying of the group, IMO), we see a schlub of a guy, Warren, emailing his boss in idiotic/bro-based prose. He pushes the Apple Intelligence feature and boom, his email is transformed into appropriate office prose. The boss reads the prose, is obviously impressed, and the tagline at the end is “write smarter.” Ugh.
Then there’s this one:
This guy, Lance, is in a board meeting and he’s selected to present about “the Prospectus,” which he obviously has not read. He slowly wheels his office chair and his laptop into the hallway, asks Apple’s AI to summarize the key points in this long thing he didn’t read. Then he slowly wheels back into the conference room and delivers a successful presentation. The tagline on this one? “Catch up quick.” Ugh again.
But in a way, these ads might not be too far from wrong. These probably are the kind of “less than average” office workers who could benefit the most from AI— well, up to a point, in theory.
Among many other things, my advanced writing students and I read Ethan Mollick’s Co-Intelligence, and in several different places in that book, he argues that in experiments when knowledge workers (consultants, people completing a writing task, programmers) use AI to complete tasks, they are much more productive. Further, while AI does not make already excellent workers that much better, it does help less than excellent workers improve. There’s S. Noy and W. Zhang’s Science paper “Experimental evidence on the productivity effects of generative artificial intelligence;” here’s a quote from the editor’s summary:
Will generative artificial intelligence (AI) tools such as ChatGPT disrupt the labor market by making educated professionals obsolete, or will these tools complement their skills and enhance productivity? Noy and Zhang examined this issue in an experiment that recruited college-educated professionals to complete incentivized writing tasks. Participants assigned to use ChatGPT were more productive, efficient, and enjoyed the tasks more. Participants with weaker skills benefited the most from ChatGPT, which carries policy implications for efforts to reduce productivity inequality through AI.
Then there’s S. Peng et al and their paper “The Impact of AI on Developer Productivity: Evidence from GitHub Copilot.” This was an experiment with a programming AI on Github, and the programmers who used AI completed tasks 55.8% faster. And Mollick talks a fair amount about a project he was a co-writer on, “Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality,” which found that consultants in an experiment were more productive when allowed to use AI— except when faced with a “jagged technology frontier” problem, which in the study was a technical problem beyond the AI’s abilities. However, one of the problems Mollick and his colleagues observed is that a lot of the subjects in their study often copied and pasted content from the AI with minimal editing, and the AI-using subjects had a much harder time with that jagged frontier problem. I’ll come back to this in a couple more paragraphs.
Now, Mollick is looking at AI as a business professor, so he sees this as a good thing because it improves the quality of the workforce, and maybe it’ll enable employers to hire fewer people to complete the same tasks. More productivity with less labor equals more money, capitalism for the win. But my English major students and I all see ourselves (accurately or not) as well-above-average writers, and we all take pride in that. We like the fact we’re better at writing than most other people. Many of my students are aspiring novelists, poets, English teachers, or some other career where they make money from their abilities to write and read, and they all know that publishing writing that other people read is not something that everyone can do. So the last thing any of us who are good at something want is a technology that diminishes the value of that expertise.
This is part of what is behind various declarations of late for refusing or resisting AI, of course. Part of what is motivating someone like Ted Chiang to write about how AI can’t make art is making art is what he is good at. The last thing he wants is a world where any schmuck (like those dudes in the Apple AI ads) can click a button and be as good as he is at making art. I completely understand this reason for fearing and resisting AI, and I too hope that AI doesn’t someday in the future become humanity’s default story teller.
Fortunately for writers like Chiang and me and my students, the AI hype does not square with reality. I haven’t played around with Apple AI yet, but the reviews I’ve seen are underwhelming. I stumbled across a YouTube review by Marques Brownlee about the new AI that is quite thorough. I don’t know much about Brownlee, but he has over 19 million subscribers so he probably knows what he is talking about. If you’re curious, he talks about the writing feature in the first few minutes of this video, but the short version is he says that as a professional writer, he finds it useless.
The other issue I think my students and I are noticing is that the jagged frontier Mollick and his colleagues talk about— that is, the line/divide between tasks the AI can accomplish reasonably well and what it can’t— is actually quite large. In describing the study Mollick and his colleagues did which included a specifically difficult/can’t do with AI jagged frontier problem, I think he implies that this frontier is small. But Mollick and his colleagues— and the same is true with these other studies he quotes on this— are not studying AI in real settings. These are controlled experiments, and the researchers are trying to do all they can to eliminate other variables.
But in the more real world with lots of variables, there are jagged frontiers everywhere. The last assignment I gave in the advanced writing class asked students to attempt to “compose” or “make” something with the help of AI (a poem, a play, a song, a movie, a website, etc. etc.) that they could not do on their own. The reflection essays are not due until the last week of class, but we have had some “show and tell” exchanges about these projects. Some students were reasonably successful with making or doing something thanks to AI— and as a slight tangent: some students are better than others at prompting the AI and making it work for them. It’s not just a matter of clicking a button. But they all ran into that frontier, and for a lot of students, that was essentially how their experiment ended. For example, one student was successful at getting AI to generate the code for a website; but this student didn’t know what to do with the code the AI made to make it actually into a website. A couple of students tried to use AI to write music, but since they didn’t know much about music, their results were limited. One student tried to get AI to teach them how to play the card game Euchre, but the AI kept on doing things like playing cards in the student’s hand.
This brings me back to these Apple ads: I wish they both went on just another minute or so. Right after Warren and Lance confidently look directly at the camera with smug look that says to viewers “Do you see what I just got away with there,” they have to follow through with what they supposedly have accomplished, and I have a feeling that would go poorly. Right after Warren’s boss talks with him about that email and right after Lance starts his summary, I am pretty sure they’re gonna get busted. Sort of like what has happened when I have suspected correctly that a student used too much AI and that student can’t answer basic questions about what it is they (supposedly) wrote.